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Abstract. The spectral dimension and the shortest path of self-avoiding walks (SAWS) with 
bridge length (interaction range) 6 = 1, a, 4, 2 are studied numerically. The spectral 
dimension is calculated by performing exact multi-neighbour random walks on the Monte 
Carlo generated SAW configurations. It is found that the spectral dimension is not affected 
by the finite range of interactions (finite bridge length), and approach to d, = 1 both in 
dimensions d = 2 and 3. The shortest path length SN of the N-step SAW with local bridges 
is also investigated. It is shown that S , /  N = A + N-A( E + C /  N). Our numerical simula- 
tion results indicate that the exponent A is independent of the dimensionality, and is about 
3/16 in dimensions d = 2-5. 

1. Introduction 

In the last fifteen years, many experiments [I]  have been performed to study the 
spin-lattice relaxation in some proteins (large linear polymer molecules). It is found 
that, by fitting the experimentally observed spin-lattice relaxation time to the theoretical 
formula [2], the spectral dimension d,  [3] of ferredoxin comes to about 4/3 and that 
of the haemoproteins to about 5/3. In fact, it was found that for these polymer 
molecules, d, equals to the respective fractal dimension d l .  If we consider that the 
protein (polymer) backbones to be self-avoiding walk (SAW) configurations and that 
the ferredoxin form the planner structures and haemoproteins form ball-like structures, 
one gets the observed values for the fractal dimensions of the proteins. But, as the 
SAWS are chain-structured objects, assuming the isotropic interactions between 
monomers, the spectral dimension d,  should be unity. This is in conflict with the 
experimental observations ( d ,  = d,> 1). 

In 1984, Helman et al [4] proposed a ‘SAW with bridges’ model, and they argued 
for a conjecture that the inclusion of the cross chain bridging interactions would 
eventually allow the diffusive modes to ‘see’ the embedding Euclidean space rather 
than the linear structure, so that normal diffusion would take place and d ,  would be 
equal to df. Since then, many authors did extensive numerical simulations and theoreti- 
cal analysis [ 5-91 essentially in the two-dimensional lattice with the nearest-neighbour 
bridges, and the conjecture was clearly disproved. People are also seeking other 
solutions to the problem [lo]. It seems that the above theoretical efforts to deal with 
the problem went in the wrong direction: the experiments are done in the solvent 
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(water), but the above theoretical models do not incorporate the solvent effect. In 
fact, in a different approach, proposed by one of the authors [ 111, it was argued that 
the solvent effect could make d,  = dr .  

Although the ‘SAW with bridges’ model is inappropriate for explaining the above- 
mentioned experimental observations regarding d, ,  it remains a problem whether the 
inclusion of the local bridges into the SAW configurations could significantly change 
the predominant linear structure of the SAW chains and thereby change their spectral 
dimension or not. Actually, different authors give different results and conjectures 
[5-81. Recently, Bouchaud er al [ 9 ]  presented a Levy flight approach to the problem, 
and by using the known results for the statistics of finite loops in a SAW, they estimated 
that the spectral dimension for the three-dimensional ‘SAW with bridges’ model would 
be about 1.69. However, as the SAWS should be less compact than the random walks 
due to the excluded volume effect, it is hard to accept the result that the SAWS could 
have a larger spectral dimension than that of the random walks in a three-dimensional 
lattice. The spectral dimension of the random walks is approximated by the formula 
d,  = 8/(4+ d )  [12]. In three dimensions, it is much smaller than the above-estimated 
spectral dimension of the SAWS. We tend to argue that in higher-dimensional spaces, 
the walker has more choice of directions to go; therefore it has a smaller probability 
of meeting the previously visited sites, and the structure would be more ramified and 
the spectral dimension should be smaller. In fact, above four dimensions, the cross 
chain interaction dies out and the scaling properties of the SAWS converge to that of 
the random walks [13], and the spectral dimension is exactly 1. It was already 
conjectured [5] that the inclusion of the finite length bridges would not change the 
spectral dimension of the system. This paper presents an extensive Monte Carlo 
simulation of the problem on the square lattice and on the cubic lattice with different 
bridge length b. Our numerical results indicate that the dynamical properties of SAWS 

with (finite length) bridges are essentially one dimensional: d, = 1 in all d. 
Also, the multifractal property of the ‘SAW with bridges’ network is of current 

interest. For example, the resistance RN - N’ of a SAW chain of length N (bridge 
bonds having identical resistance to the chain bonds), with 6 as the resistance exponent 
[ 14,6,8], and the shortest path length S ,  - N e ,  where E is the shortest path exponent 
[15,8] have recently been investigated in great detail and exponents 6 and E have 
been estimated (see also [16] for a recent study of the multifractal properties of the 
SAW networks in d =2) .  All these results (mostly numerical, and in d =2)  indicate 
that the ‘SAW with bridges’ network is dominantly linear in structure ( 6  = E = 1). In 
fact, since the diffusion on the network is related to its conductivity, 8 is related to d, 
by a scaling relation [8] d,  = 2/(1+ 6). Our results d,  = 1 for all d thus also implies 
6 = E = 1 for all d. However, there are expected to be significant finite-size scaling 
corrections to the leading linear scaling behaviour. On average,  SAW^ with finite range 
bridging interactions are expected to have significant corrections to scaling due to the 
local blobs (coming from the multiply connected structure due to local bridges), over 
the finite fraction of the linear region (not connected to other parts of the SAW by any 
finite range bridges or interactions). Quantities of interest therefore, say the average 
shortest path length S,, are expected to be proportional to N in the large- N limit, i.e. 

S , / N = A +  N F A f ( l / N ,  d, b )  E = 1. (1) 

The finite-size correction to this major linear scaling behaviour is determined by the 
exponent A, which is contributed by the non-trivial blob structures of the network. 
The function f is an analytic function of its argument, and approaches a constant 
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when 1/ N + 0. The simplest possible form forf is expected to be B + C/ N. Therefore, 
we could approximate (1) by the following: 

S N /  N = A + N-"( B + C/ N ) .  (2) 
We numerically evaluated SN by Monte Carlo simulation in d = 2-5 hypercubic 

lattices with different bridge lengths. A least-squares fit to (2) gives A~O.19kO.01 in 
d = 2-5. It seems that A is a superuniversal constant, and we conjecture it to be 3/ 16 
for all d 3 2. 

2. Computer simulations 

2.1. The spectral dimension 

The models are similar to the one described in an earlier publication [5], except that 
here we allow multi-neighbour random walks. The multi-neighbour random walk is 
equivalent to the vibrational motion with multi-neighbour interactions. Taking the 
lattice constant to be unity, on the square lattice, the nearest-neighbour distance is 1, 
the next-nearest-neighbour distance is 8, and the third-neighbour distance is 2. Two 
lattice sites are connected by the bridging interaction if the distance between them is 
less than or equal to the bridge length 6. 

In performing the random walk on the SAW configurations, we use the same random 
walk jump probabilities to all the accessible sites (within the interaction range). A 
SAW configuration on the square lattice with bridge length 6 = 2 is shown in figure 1, 
and models with other interaction lengths and in different dimensions could be 
constructed in a similar fashion. 

; . - . . . . . . . . . . . . -. . -. . . ! . ._. . . ~ . . . . . ~ ..".!....- ~ _.___! 
. ! : !  

Figure 1. A S A W  configuration with third-neighbour bridges on the square lattice. The 
thick lines represent the SAW backbone; the thin lines represent the 'bridges'. 

If R, denotes the average end-to-end distance of the n-step random walks on the 
SAW configurations, the random walk dimension d, is defined through the equation 

n-m.  (3)  
We use the computer-simulated R, to calculate d,( n )  through the formula: 

(4) 
We also calculated P,(O), the probability of returning to origin after an n-step random 
walk. It has the following asymptotic form [3]: 

R, - n ' l d w  

dw(n) = W ( n  + l ) / ( n  - 1)l/ln[Rn+,/Rn-i]* 

( 5 )  P,(o) - n-dJ2. 
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d,( n )  is calculated via the equation: 

d,(n) = -2 ln[P,+,(O)/P,-,(O)]/ln[(n + l ) / ( n  -I)] .  (6) 

CN - N'- 'K;~  N-*W (7) 

Kc( N) = [ C N  - I /  C N  + 1 11'** (8) 

If CN denotes the total number of N-step SAW configurations, then asymptotically 

We could, therefore, calculate K ,  using the formula: 

The error in neglecting the NY-' term indeed disappears as N becomes large. 
Using a very efficient constant fugacity Monte Carlo enumeration method [ 171, we 

generated the 65-step SAW configurations on a 70x70 site square lattice with an 
IBM-PC/XT personal computer. On each of the generated SAW configurations, we 
performed the exact multi-neighbour random walks [18] up to 50 steps. By the same 
method, we generated the 100-step SAW configurations on a 70 x 70 x 70 cubic lattice 
with a Motorola 68020 based minicomputer, and performed the same 100-step exact 
multi-neighbour random walks on each of the SAW configurations. In figure 2, we 
plotted the calculated d , ( n ) ,  d,(n), (d,(n)-') against l / ln(n),  and K,( N) against I /  N 
(calculated from equations (ti), (4) and (8) respectively). It is clear that for different 
bridge lengths on the square lattice and for the nearest-neighbour bridge on the cubic 
lattice, d, converges to 1. For next-nearest-neighbour bridges on the cubic lattice, d, 
becomes less than 1. This is caused by the finite SAW chain length and the comparatively 
large random walk length. In fact, d, in such cases is never expected to be less than 
unity and the inclusion of the bridge interactions can only increase the spectral 
dimension. We thus take the results as indicative of d, = 1. The large n value of the 
d, are unreliable when the random walk step size n is comparable to the SAW chain 
length N. When the step length of the random walk is large, the random walker has 
a non-negligible probability of reaching the edge of the SAW configuration, and the 
random walk end-to-end distance becomes incorrect. However, as the probability of 
returning to origin after an n-step random walk is affected only when the random 
walkers are reflected from the edge of the SAW configuration, it is less sensitive to the 
SAW chain length. Neglecting therefore, the very large n (compared with N) results, 
d,/2 converges to df. Knowing that d, could also be expressed as d,=2d,/dW, here 
df being the fractal dimension of the SAWS, we also arrive at the same result ds+ 1. 
For checking the convergence to the asymptotic limit of SAW step sizes, we also 
calculated the critical fugacity K , ,  and it converges to the known value [19]. 

2.2. The shortest path 

The SAW configurations are again generated by the constant fugacity Monte Carlo 
method [ 171. For an N-step SAW configuration, the middle site, i.e. the (N/2)th site 
counted from one end of the SAW configuration, is labelled the 0-site, all the sites 
which belong to the SAW configuration and can be connected to the middle site are 
labelled as 1-site and all the unlabelled sites which belong to the SAW configuration 
and can be connected to the 1-sites are labelled as 2-sites, etc. Thus, the labelling of 
each site is equal to the shortest path from that site to the middle one. On the 
d = 2-5-dimensional hypercubic lattices, for each bridge length, with a Motorola 
68020-based minicomputer, we generated typically 20 000-80 000 SAW configurations 
and calculated the shortest path. Our algorithm can calculate the shortest path for 
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1000-2000 SAW configuration in one minute of CPU time. Figure 3 is the configuration- 
averaged S,/N plotted against the path length N along the SAW chain, and the 
least-squares fit of the computed data to (2) is shown in table 1. As (2) is supposed 
to be correct only in the large-N limit, in our least-squares fit, we only use the large-N 
values for S N /  N. For the M-site SAW configurations, we use the data for N > (2/5)M, 
N > (1/2)M, and N > (2/3)M respectively in three independent fittings. The error 
bars in the table are the largest deviations from the mean value. It is concluded by 
inspecting table 1 that A is a superuniversal exponent and its value is 0.19 * 0.01 for 
d = 2-5. It is related to the non-trivial blob structure of the  SAW^ with finite range 
bridging interactions. It should be mentioned that, for d = 6, our simulation indicated 
a lower value of A ( ~ 0 . 1 4 ) .  However, we believe that this is due to the insufficient 
lattice size (1 16)  and the SAW chain length ( N  = 40) which we could simulate in such 
a high dimension. 

Figure 4 is our simulated critical fugacity K ,  calculated via (8) for d = 4, 5 and 6. 
It is found from our computer simulation that K ,  = 0.148 * 0.002,0.113 * 0.001,0.0916 * 
0.0004 in four-, five- and six-dimensional hypercubic lattices respectively. Defining 
the effective connective constant zeff = 2+ z - 1 - 1/ K ,  [ 151, where z is the lattice 

Table 1. Exponent A and the parameters A, B, C from the least-squares fit to (2). 

b d A B C A 

2 
3 

1 4 
5 

2 

4 
5 

J5 3 

d3 3 

2 
2 3 

0.502 * 0.004 

0.416 * 0.000 

0.263 i 0.003 

0.0648 i 0.0000 
0.0680 * 0.0000 

0.044 f 0.006 

0.103 f 0.006 

0.390 i 0.000 

0.455 * 0.000 

0.0924 i 0.0004 

-0.01 5 i 0.002 

0.496 * 0.005 
0.501 i 0.000 

0.495 * 0.001 
0.500i0.001 

0.498 * 0.003 
0.500i0.000 
0.494 * 0.000 
0.498 * 0.000 

0.500 i 0.005 

0.494 i 0.006 
0.500*0.000 

-0.1 * 0.8 
0.96 * 0.21 
0.91 * 0.09 

0.2 i 0.8 
1 .OO i 0.06 
0.57 * 0.08 

0.61 i 0.04 

0.740 * 0.002 

-0.3 i 0.7 

-1 .Of  1.0 
0.1 * 0.3 

0.191 iO.008 
0.200 i 0.002 
0.197 r0.003 
0.182 i 0.001 

0.194 i 0.006 
0.200i0.001 
0.185 f 0.002 
0.18810.000 

0.18210.006 

0.186 * 0.012 
0.196 f 0.004 

008 I 
0 0 1  0 2  0 3  0 4  0 5  

1/N 

Figure 4. The computer-simulated K, on d =4, 5, 6 hypercubic lattices. The values of 
l / ( z  - 1) for the corresponding lattices are indicated. 
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Figure 5. d-dependence of zcfi-2 and of parameter A. H, A for b = 1; 0, A for b =a; 
x ,  ze,-2. 

coordination number, the d dependence of zeff - 2  and of the parameter A in (1) is 
depicted in figure 5 .  

3. Discussion 

From our computer simulation, it is seen clearly that the inclusion of the massless 
bridges into the SAWS will not change their spectral dimension. If we think that the 
'SAW with bridges' model still forms a fractal structure, i.e. if it were self-similar in a 
large length scale, then upon a change of the length scale, the interaction length would 
shrink, and finally arrive at the nearest-neighbour model. The above argument indicates 
that any finite length bridge models belong to the same universality class, and have 
the same scaling behaviour. As the 'SAW with bridges' model has a finite fraction 
(finite A in (2)) of steps which form the linear structure, the dynamic properties of 
the model can only be one dimensional, i.e. d, = S = E = 1. The existence of the finite 
fraction of the linear portion in the SAW with bridges model also explains the disagree- 
ment of our results with that of Bouchaud et a1 [9]. But the inclusion of the bridges 
will have an effect on the short length scale behaviour. The effect can be seen in figure 
2. It seems that the inclusion of the bridges tend to increase the spectral dimension 
when the random walk is short (finite-size crossover effect). Therefore, the data from 
the smaller SAW chain lengths and shorter random walks tend to be misleading. 

For bridge length b = 1, let 2' denote the fraction of sites in a SAW configuration 
which form the linear structure, and beff the effective (chemical) length of a bridge. 
We then have A = 2' /bef f .  This can be readily seen for d = 1, where be, = b. In a 
one-dimensional SAW, no blob can be formed by the bridges and all the sites in the 
SAW configuration belong to the linear part, 2'= 1. The shortest path SN in this case 
is equal to (1/ b )  N, i.e. A = 1/ b. In higher dimensions, as the fraction of sites which 
form loops by the nearest-neighbour bridges is related to ( zeff - 2), we would expect 
[ 151 2' - 1 - [ ( z  - 1) - l / K J  for the linear fraction. Its minimum value occurs at d = 2. 
However, be, is larger than b for d > 1, and decreases to b again for d + CO. As a 
consequence, the minimum value of A is expected to be found at a higher d ( d  > 2). 
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This can be observed from table 1 and figure 5 .  The argument is also true for b > 1, 
with a smaller 9 and a larger beR. The observed negative value of A for b = 2 on 
cubic lattice is due to the finite SAW chain length. 

One of the interesting observations of our simulation is that the exponent A in (2) 
is superuniversal. The shortest path is closely connected to the dynamic aspect of the 
problem, and the dynamic properties are more likely to be superuniversal, like the 
spectral dimension of the percolation. Since the second term in (2) is coming from 
the blob structure of the model, we conclude that the dynamic properties of the blobs 
might be superuniversal. It may be noted that the value of the exponent A (contributed 
by the blob structures) is not observed to have any significant change at d =4, the 
upper critical dimension for SAWS. This shows that although the random (long distance: 
greater than the bridge or interaction range) folding of the linear part (given by fraction 
A), determines the SAW size exponent and the excluded volume effect (size exponent 
more than that of random walk) disappears above d = 4, the short-range blob structural 
singularities do not feel any such disappearance of fluctuations at and above d =4. 

In conclusion, our numerical results suggest that the ‘SAW with bridges’ models in 
two and three dimensions all give d,- 1, and the spectral dimension is not affected by 
the bridge length. As it is known exactly that d,= 1 for d = 1 and for d 3 4, it is 
conjectured that the ‘SAW with bridges’ model belongs to the same universality class 
as the ordinary SAW, i.e. d, = 1 for all d. Our numerical simulation also indicates that 
the same structural properties of the blobs, related to the exponent A in (2) in the 
‘SAW with bridges’ model, might be superuniversal. 
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Note added in prooj  Apart from [16], the multifractal property of the SAW with bridges network has again 
been investigated numerically in two dimensions in a recent publication [20], where the authors also obtain 
ti, = 1, in agreement with ours (for d = 2,3). The finite-size correction exponent A for SN has recently been 
studied [21] using small-N series enumeration (up  to N = 18, 11 and 12 only for square, triangular and 
simple cubic lattices respectively) and the extracted values of A are A-0.15 and 0.33 for d = 2 and 3 
respectively. However, larger series results for S ,  are being tried 1221. 
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